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A B S T R A C T

A diameter increment model is developed and evaluated for individual trees of ponderosa pine

throughout the species range in the United States using a multilevel linear mixed model. Stochastic

variability is broken down among period, locale, plot, tree and within-tree components. Covariates acting

at tree and stand level, as breast height diameter, density, site index, and competition indices are included

in the model as fixed effects in order to explain residual variability. The data set used in this study came

from long-term permanent research plots in even-aged, pure stands both planted and of natural origin.

The data base consists of six levels-of-growing stock studies supplemented by initial spacing and other

permanent-plot thinning studies for a total of 310 plots, 34,263 trees and 153,854 observations.

Regression analysis is the preferred technique used in growth and yield modeling in forestry. We choose

the mixed effects models instead of the regression analysis approach because it allows for proper

treatment of error terms in a repeated measures analysis framework. Regional growth and yield models

exist for ponderosa pine. However, data collection and analysis procedures differ. As a result,

comparisons of growth responses that may be due to geographic variation of the species are not possible.

Our goal is to present a single distance-independent diameter increment model applicable throughout

the geographic range of ponderosa pine in the United States and by using only data from long-term

permanent plots on sites capable of the productivity estimated by Meyer [Meyer, W.H., 1938. Yield of

Even-Aged Stands of Ponderosa Pine. US Department of Agriculture Technical Bulletin 630].
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1. Introduction

Ponderosa pine (Pinus ponderosa Dougl.) is one of the most widely
distributed conifers in North America. It occurs in 15 western states,
extending from the western Great Plains to the Pacific Coast and
from southern British Columbia, Canada, to Baja California, Mexico.
It occurs in pure stands or in association with sugar pine (Pinus

lambertiana Dougl.), incense-cedar (Libocedrus decurrens Torr.),
Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco), Jeffrey pine
(Pinus jeffreyi Grev. & Balf.), limber pine (Pinus flexilis James), oaks
(Quercus sp.), junipers (Juniperus sp.), and true fir (Abies sp.).
Ponderosa pine is found at elevations ranging from sea level in the
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northern part of its range to 10,000 feet in the southwestern United
States (Oliver and Ryker, 1990). Throughout this vast area ponderosa
pine is one of the most valued tree species. Recognized initially for its
wood quality and as a major source of forage for cattle, ponderosa
pine forests are now recognized as vital wildlife habitat, and they
provide abundant recreational opportunities. As a result, ponderosa
pine forests have a long history of intensive management.

Growth and yield models and tree diameter growth models in
particular are invaluable tool for forest management planning at
any level. Accurate estimates of both current resource levels and
the expected resource changes from implementing various
management alternatives are needed for making wise manage-
ment decisions. In these models, diameter growth is expressed as a
function of tree size and vigor effects, competition effects, and site
effects (Cole and Stage, 1972; Dolph, 1988; Wykoff, 1990; Dolph,
1992; Hann and Hanus, 2002; Mailly et al., 2003; Calama and
Montero, 2004; Trasobares and Pukkala, 2004; Zhao et al., 2004;
Calama and Montero, 2005).

Regression analysis is the most commonly used statistical
method in forest modeling (Gregoire et al., 1995). The data set for
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these research studies come from data measured repeatedly over
time on the same tree (multiple observations obtained from the
same sampling unit or subject in sequence over time), also known
as longitudinal data. Without question, research studies with
repeated measure designs are fundamental to most ecological and
biological research (Gutzwiller and Riffell, 2007). However, the
nature of repeated measure design and these hierarchical
structures are often ignored and independence between observa-
tions is assumed (Biging, 1985; Lappi, 1986; Searle et al., 1992;
Gregoire et al., 1995; Keselman et al., 1999; Littell et al., 2000;
Kowalchuk and Keselman, 2001; Garrett et al., 2004; Calama and
Montero, 2005; Gutzwiller and Riffell, 2007).

Growth and yield researchers preferring Ordinary Least Squares
Estimation (OLSE) technique to fit a regression model to repeated
measures data argue that the ordinary least squares estimates are
unbiased; and that more reasonable variance structure may not be
necessary since users are mainly interested in prediction
(Monleon, 2004). This argument is not supported by the statistical
model used because it violates the first fundamental assumption
needed to apply the OLSE method. It violates the assumption of
independent observations. The fact is that since the same
experimental unit is measured several times makes the re-
measured observations correlated (Garrett et al., 2004; Hanke
and Wichern, 2005; Gutzwiller and Riffell, 2007). Models that
ignore the plot (sampling unit) effect and the error structure
imposed by the sampling scheme assume that the relationship
between tree growth and predictor variables within-plot is the
same as that between-plot (Gregoire et al., 1995; Monleon, 2004;
Garrett et al., 2004; Calama and Montero, 2005).

For repeated measures data, the sample of observations cannot
be regarded as a random sample. Further, strong autocorrelation
can make two mutually exclusive variables appear to be related.
Consequently, application of regression analysis techniques to
observations of this kind can produce a significant regression. This
type of estimated relationship is said to be spurious. Spurious
regression problems are detected by the examination of the plot of
the residuals against time. When regression analysis techniques
are applied to time dependent data, spurious regression may go
undetected with a serious misinterpretation of the results (Hanke
and Wichern, 2005).

Additionally, mixed models represent a significant improve-
ment over traditional repeated measures analysis using regres-
sion analysis approach because regression analysis technique
does not readily allow for missing data. For example, if an
observation for one individual is missing for one of the time
periods, the data for all time periods for that individual must be
excluded from the analysis, unless an estimate for the missing
datum can be generated. Sometimes it is reasonable to do this by
computing a mean based on the other observations in the same
treatment group and time period, but this approach reduces the
variance of the group and thereby alter the outcome of the
analysis in ways that are not defensible. Mixed models on the
other hand, accommodate incomplete records without the need
for such estimate (Littell et al., 1996; Gutzwiller and Riffell,
2007).

The analytical techniques for assessing statistical significance
must be appropriate for the error structure imposed by the
sampling scheme otherwise the model mean square error may
underestimate the variance of the coefficient estimators and also
produce incorrect estimates for the confidence interval of the
parameters (Biging, 1985; Gregoire et al., 1995; Keselman et al.,
1999; Littell et al., 2000; Kowalchuk and Keselman, 2001; Garrett
et al., 2004; Calama and Montero, 2005; Hanke and Wichern, 2005;
Gutzwiller and Riffell, 2007). A fitting routine that does not account
for repeated measures in the model will produce unreliable
confidence intervals for prediction (Garrett et al., 2004; Hanke and
Wichern, 2005; Gutzwiller and Riffell, 2007). The more compli-
cated error structure of this type of data has often been ignored in
forestry, with some exceptions (Gregoire et al., 1995). To overcome
this problem, growth and yield researchers have widely proposed
multilevel linear and nonlinear mixed models with both fixed and
random components (Biging, 1985; Gregoire et al., 1995; Hall and
Bailey, 2000; Calama and Montero, 2005; Lynch et al., 2005; Uzoh
and Oliver, 2006; Gutzwiller and Riffell, 2007).

Mixed model calibration of tree growth increment is based on
the fact that the stochastic component of growth variability is a
consequence of different factors acting simultaneously (Calama
and Montero, 2005; Gutzwiller and Riffell, 2007). If it is considered
that the effect of some of these unobservable factors remains
constant for a given period (Miina, 1993), then it is possible to
calibrate future increment by introducing into the model the
stochastic effects predicted for a prior period; as a result, permits
the calibration of growth models for a specific location and growth
period (Calama and Montero, 2005; Lynch et al., 2005; Gutzwiller
and Riffell, 2007).

Many regionally limited growth and yield models are available
for this species (Ritchie, 1999). Since data collection and analysis
procedures differ, comparisons of growth responses that may be
due to geographic variation of the species are difficult. Data for
these models are often compiled all or in part from temporary plots
often using stem analysis techniques. Such data suffer from the
same weaknesses as retrospective studies. The investigator is
never certain that the response measured is the result of the stated
condition (Uzoh and Oliver, 2006). Therefore, the objective of this
study is to overcome these weaknesses by presenting a single
distance-independent diameter increment model applicable
throughout the range of ponderosa pine in the United States
and by using only data from long-term permanent plots on sites
capable of normal yields (Meyer, 1938).

2. Methods

2.1. The data base

The foundation of the data base is six levels-of-growing-stock
studies established throughout the western United States in the
1960s. All used a common study plan that divided the range of
ponderosa pine in the United States into five provinces and
specified five or six stand density levels replicated three times
(Myers, 1967). Results from individual installations have been
reported previously (Table 1). These data were supplemented with
initial spacing and other permanent-plot thinning studies.
Individual tree data were from plots in planted stands or stands
of natural origin and included a wide range of size classes (Tables 2
and 3). Stands were free or mostly free of competing shrubs that
reduce growth of young ponderosa pine, especially in central
Oregon and California (Oliver, 1984; Oliver and Edminster, 1988;
Oliver, 1990; Cochran and Barrett, 1999). Trees in all plots in the
data base were tagged allowing the collection of information on
individual trees. The number of growing seasons between
remeasurements was usually 5, but most plots were observed
for a much longer period. Eighty-two percent of the plots were
observed for 20 years or more-four 5-year growth periods. Basic
records for each plot included latitude, elevation, aspect, slope
percent, and plot size. Tree records at each remeasurement
included diameter at breast height (dbh), and total height on a
sample of trees. Diameter measurements were repeated on the
same trees ensuring that the 5-year diameter increment is given by
the difference between the two successive observations of
diameter.



Table 1
Location and literature citations for five levels-of-growing-stock installations in ponderosa pine in western United States

Province Installation name Geographic location Literature citation

I Elliot Ranch West slope northern Sierra Nevada, CA Oliver (1997)

II Lookout Mountain East side of Cascade Range, OR Cochran and Barrett (1999)

III Crawford Creek Blue Mountain, OR Cochran and Barrett (1995)

IV Black Hills Black Hills, SD Boldt and Van Deusen (1974)

V Taylor Woods Coconino Plateau, AZ Ronco et al. (1985)

Table 2
Distribution of plots in each province by stand origin and tree size used to develop

the 5-year periodic annual increment (PAI) in diameter model for managed even-

aged stands of ponderosa pine throughout the western United States

Province

I II III IV V

Number of plots

Stand origin

Natural 11 71 33 42 18

Planted 95 26 14 0 0

Stand size class

Saplings 31 10 0 0 0

Poles 64 83 47 42 18

Sawtimber 11 4 0 0 0
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3. Analysis

3.1. The equation

Growth of the individual trees was potentially affected by four
groups of variables: tree size and vigor effects, site effects,
competitive effects, and regional effect. The combination of some
of these predictor variables and the transformation of others were
initially tested for predicting 5-year periodic annual increment
(PAI) in diameter (cm) using multilevel mixed models analysis
procedure. The multilevel mixed model included both fixed effects
and random effects components. Between periods, between plots,
between tree and within-tree differences were accounted for by
including random effect parameters specific at those levels. The
variable selection process involves a series of steps beginning with
an initial data exploration that involves plotting the data and
examining correlation statistics to identify those variables that
may be useful in the model.

3.2. Tree size effects

We started by defining the relationship between increment and
size and accounting for the two different sizes of experimental
Table 3
Summary statistics for the data used to develop the 5-year periodic annual increment (P

western United States

Variable Number of trees observed Mean

HT (m) 34263 10.797

DBH (cm) 34263 18.167

SI (m) 34263 21.619

AGE (year) 34263 58.759

BAL (m2/ha) 34263 13.930

Plot variables Number of plots Mean

ELEVA (m) 310 41.789

SLOPE (per) 310 6.466

ASPECT (rad) 310 116.951

SDI (trees/ha) 310 473.026

LAT 310 42.312
units: a spatial unit which is an individual tree and a set of
temporal units which are the repeated measurements on
individual trees. The following equation was used:

lnðPAIDBHÞ ¼ b0 þ b1 lnðDBHÞ þ b2ðDBH2Þ þ hl þ e jðlÞ

þ eikð jlÞ; (1)

where ln(PAIDBH) is the natural logarithm of 5-year periodic
annual increment (PAI) in diameter at breast height (dbh) (cm);
ln(DBH) is the value of the natural logarithm of initial dbh (cm);
(DBH2) is the value of the square of initial dbh (cm), b0, b1, b2 are
regression coefficients, hl is the random effect of the l-th location
with hl assumed to have an expected value of zero (0) and constant
variance s2

L , ej(l) is a random error for plot j within locale l assumed
to have an expected value of zero (0) and constant variance ðs2

PðLÞÞ,
and eik(jl) is a random error for measurement k on tree i within plot j

and locale l assumed to have an expected value of zero (0) and
variance (s2) with the covariance between observations k and k0 on
the same tree separated by d years following an autoregressive
process:

Covðeikð jlÞ; eik0ð jlÞÞ ¼
s2rjdj; if i ¼ i0; k 6¼ k0; j ¼ j0; l ¼ l0

s2; if i ¼ i0; k ¼ k0; j ¼ j0; l ¼ l0

0;otherwise;

8<
: (2)

where r is the serial correlation coefficient for errors across time (5
years) on the same tree.

When the resulting predictive function is plotted against DBH,
the resulting function is a skewed unimodal shape with a
maximum between 20 and 30 cm (Fig. 1). Additionally, the
intercept term, b0, can be expanded to include other tree and
site effects that modify diameter increment while still retaining
the basic relationship between tree size and growth (Wykoff, 1990;
Uzoh, 2001; Uzoh and Oliver, 2006).

3.3. Site effects

For a model to adequately characterize tree growth, it must
include some measure of site productivity (Spurr and Barnes,
1980). Latitude, longitude, aspect, slope, elevation, and site index
AI) in diameter model for managed even-aged stands of ponderosa pine throughout

S.D. Minimum Maximum

4.542 0.034 53.214

8.801 0.254 98.044

6.859 13.106 48.768

21.416 4.000 110.000

9.570 0 74.249

S.D. Minimum Maximum

4.303 35.280 48.500

7.264 0 42.000

100.942 0 360.000

226.967 0 1444.220

4.104 35.28 48.5



Fig. 1. Five-year periodic annual increment (PAI) in diameter by initial diameter at

breast height (dbh) using the coefficients derived for Eq. (1).
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were initially tested for site effects variables. The site quality
indicator term is represented as:

SITE ¼ b3SI; (3)

where SI is site index (m) (Meyer, 1938). Meyer’s site index was
chosen because the data came from the widest geographic range of
any site index system presently available. Provincial site index
systems may more accurately portray sites within that province
but they are widely divergent (Dunning and Reineke, 1933; Minor,
1964; Boldt and Van Deusen, 1974; Barrett, 1978; Powers and
Oliver, 1978). Because, the main objective of this study is to
provide forest managers with a single diameter increment model
that can provide useful guidelines for a variety of management
objectives throughout the geographic range of ponderosa pine, we
had to use a range-wide site index system.

In addition to SI, other geoclimatic variation (OGV) may remain
because of the range of variation in species characteristics and
stand conditions in the study area, which extended from the Black
Hills of South Dakota to the Pacific Coast. As a result, slope (SL),
aspect (ASP), and latitude (LAT) terms can help in refining the
overall site effect. These factors generally have no direct effect on
tree growth, but act indirectly by influencing moisture, tempera-
ture, light, and other chemical and physical agents of the site. Slope
and aspect are included using Stage’s (1976) transformation. The
combined effects of slope, aspect, and latitude are represented by
OGV:

OGV ¼ b4SL½COSðASPÞ� þ b5 LAT; (4)

where SL is the slope angle in percent, ASP is the aspect in radians,
and LAT is latitude in degrees.

3.4. Competitive effects

Finally, the increment attained by an individual tree is also
dependent on its competitive status relative to neighboring trees
and the impact of management. Basal area in larger trees (BAL),
stand density index (SDI), stand basal area (BA), and basal area in
larger trees divided by dbh of the subject tree (BAL/DBH) were
initially tested for competitive effects variables. The competitive
effects (CE) term is represented by SDI (Reineke, 1933) for overall
stand density and BAL/DBH for the individual tree’s competitive
position. SDI has a distinct advantage over stand basal area as a
measure of stand density because it is less influenced by age and
site quality. BAL has been used often as a tree-position variable in
equations for predicting growth because it describes a tree’s
position in relation to all trees measured in a plot or stand (Ritchie
and Hann, 1985; Wykoff, 1986; Dolph, 1988; Wykoff, 1990; Uzoh
et al., 1998; Uzoh, 2001; Uzoh and Oliver, 2006). The competitive
effects (CE) term is represented by SDI and BAL/DBH:

CE ¼ b6SDIþ b7

BAL

DBH
; (5)

where SDI is stand density index (T/ha), and BAL/DBH is the basal
area in larger trees (m2/ha) divided by the dbh of the subject tree.

3.4.1. Model selection

Many different tools can be used in evaluating competing
models to determine which model is most appropriate. Most of
these criteria are based on the presumption that you want to create
a model that minimizes the unexplained variability (the mean
squared error of prediction) with the fewest number of variables
possible. Of the potential models, the one selected was chosen on
the basis of the following criteria:
� T
he covariance structure was chosen among the two candidates
of autoregressive errors and compound symmetry based on a
maximum likelihood estimation of the fixed effects and random
effects and choosing the structure that produced the smallest
Akaike’s Information Criterion (AIC) (Rawlings et al., 1998;
Hastie et al., 2001; Burnham and Anderson, 2002).

� R
estricted maximum likelihood (REML) was used to fit different

fixed effects models. Then AIC was used to assess model fitness.

� R
esidual plots were examined to check on normality assump-

tions and the Spearman rank correlation coefficient was
calculated for examining the stability of the variance across
the range of independent variables (Carroll and Ruppert, 1988).

AIC (The Fit Statistics) is defined as follows: AIC =
�2 log L + 2(p + 1), where L is the maximum of the likelihood
function and p is the number of predictors (including the
intercept).

3.4.2. Repeated measures analysis

Selecting an appropriate covariance model is important in
repeated measures analyses. If an important correlation is ignored
by using a model that is too simple, the risk of Type I error rates is
increased for fixed effects tests. If the model is too complex, power
and efficiency is sacrificed. This decision process can be assisted by
using the goodness of model fit criteria (AIC).

In selecting covariance structure, we used the procedure
outlined by Gutzwiller and Riffell (2007):
1. F
it the fixed effects portion of the model.

2. Id
entify a set of candidate covariance structures.
� Consider ecological and biological characteristics of the

dependent variables. For example, does the variance of the
response variable fluctuate from year to year.
� Consider parsimony of the covariance structure relative to

available sample size. Many of the available covariance
structures require a large number of extra parameters, which
may exceed the number of parameters that can be confidently
estimated for a given sample size.
3. F
it a separate mixed model (with an independent fixed effects
portion) using each of the candidate covariance structures.
4. S
elect the most appropriate covariance structure using Akaike’s
Information Criteria (AIC). The covariance structure with the
smallest value of the criteria is considered most desirable.

In this study based on the value of AIC, the autoregression
covariance structure (with multiple observations on individual
trees autocorrelated in time) outperformed other covariance



Table 4
Prediction mean squares error (MS Error, cm), mean bias (cm), absolute mean bias

(A Mean bias, cm), and mean percent error (Mean %Error, cm) by mixed model and

regression model using validation data set of size 10% of the total data set

Model n MS error Mean bias A mean bias Mean %error

Mixed 15498 0.2797 �0.1835 0.3983 21

Regression 15498 0.2894 �0.2373 0.4084 24

Fig. 2. Five-year periodic annual increment (PAI) in diameter by initial diameter at

breast height (dbh) and site index (SI) for managed even-aged stands of ponderosa

pine throughout western United States using the coefficients in Table 6 (a value of

40 was assigned for latitude, a value of 25 was assigned for both slope and aspect, a

value of 120 was assigned for SDI, and a value of 20 was included for BAL/DBH).
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structures such as compound symmetry (with multiple observa-
tions on an individual tree equally correlated irrespective of time).

The random terms (a variance component for plots within
locales and for trees within plots along with the correlation
between successive measurements on individual trees) are
represented, which provided the best relationship between 5-
year periodic annual increment (PAI) in diameter (cm) of
individual ponderosa pine trees, and tree size and vigor effects,
site effects, competitive effects, and regional effect. There are
several statistical packages that can estimate the coefficients of a
linear regression model with random effects due to the repeated
measures or other random blocking structures (Mixed General
Linear Models (MGLM)). However, we used the SAS (v.9.1.3)
software (SAS Institute, 2006) in our analysis because it is widely
available, and it is the platform with which we are most familiar.

4. Model testing and validation

Shugart (1984) defined model validation as ‘‘procedures, in
which a model is tested on its agreement with a set of observations
that are independent of those observations used to structure the
model and estimate its parameters’’. There are many types of
validation methods available; some are qualitative and others are
quantitative (Holmes, 1983; Sargent, 1999). The use of statistical
tests in model validation has drawn much debate since the work of
Wright (1972), because of the varying criteria for the ‘‘value’’ of
models and the methods of determining it (Mayer et al., 1994;
Morehead, 1996). Because each model is unique, no single
validation technique or method is widely applied. For selecting
the most suitable regression model, it is generally advisable to use
some measure of lack of fit in combination with one or more test
statistics (Kozak and Kozak, 2003). Therefore, it is important to
know that model validation is not designed to prove that a model is
correct (Popper, 1963), but rather to show that model predictions
are close enough to independent data and that decisions made
based on the model are defensible (Yang et al., 2004).

There are four procedures commonly used in model validation:
(1) a comparison of predictions and coefficients with physical
theory; (2) a comparison of results with those obtained by theory
and simulation; (3) the use of new data; and (4) the use of data
splitting or cross validation (Snee, 1977). Since a new data set is
often not available, data splitting is regarded as an acceptable
alternative by most practitioners provided that the data set is large
enough (Yang et al., 2004).

The dataset was randomly split into 10 parts and 90% was used
for initial model development and 10% was used for model
validation. The final model was developed using the entire dataset.
Using the validation dataset, the coefficients of the multilevel
mixed model analysis and the regression model analysis were used
to predict 5-year PAI in diameter (cm). The residuals were
calculated by subtracting the predicted values from the observed
values. Four lacks of fit statistics were used to check model
accuracy:

Mean Squared Error ðMS ErrorÞ ¼ 1

n

Xn

i¼1

ðYi � ŶiÞ2;

Mean bias ðMBÞ ¼ 1

n

Xn

i¼1

ðYi � ŶiÞ;

Absolute Mean biasðA Mean biasÞ ¼ 1

n

Xn

i¼1

jðYi � ŶiÞj;

and Mean Percent Error ðMean% ErrorÞ ¼ 1

n

Xn

i¼1

ðYi � ŶiÞ
Yi

;

where n is the number of observations; Yi is an actual observation
of a given dependent variable, and Ŷi is the actual predicted value
of a given observation of the dependent variable. The validation
results are presented in Table 4.

5. Results

The following equation provided the best fit:

lnðPAIDBHÞ ¼ b0 þ b1 ln ðDBHÞ þ b2 DBH2 þ b3 SI

þ b4 SL½COSðASPÞ� þ b5 LATþ b6 SDIþ b7
BAL

DBH

þ hl þ e jðlÞ þ eikð jlÞ; (6)

The random effects were trees, plots, and locations. Where
ln (PAIDBH) is the natural logarithm of 5-year periodic annual
increment (PAI) in diameter at breast height (dbh) (cm), ln(DBH) is
the value of the natural logarithm of initial dbh (cm), DBH2 is the
square of initial dbh (cm), SI is the Meyer’s site index (m), SL is the
average slope for the stand (percent), ASP is the average aspect for
the stand (radians), LAT is the latitude for the stand in degrees, SDI
is the stand density index (trees/ha), BAL/DBH is the basal area in
larger trees (m2/ha) divided by the dbh of the subject tree (see
Table 6), b0, b1, b2, b3, b4, b5, b6, and b7, are regression coefficients, hl

is the random effect of the l-th location with hl assumed to have an
expected value of zero (0) and constant variance s2

L , ej(l) is a
random error for plot j within locale l assumed to have an expected
value of zero (0) and constant variance (s2

PðLÞ), and ejk(jl) is a random
error for measurement k on tree i within plot j and locale l assumed
to have an expected value of zero (0) and variance (s2) with the
covariance between observations k and k0 on the same tree
separated by d years (see Eq. (2)).

The 5-year periodic annual increment (PAI) in diameter (cm)
model developed [Eq. (6)] displayed a unimodal, positively skewed
shape that is typical of tree growth processes (Fig. 2) (Assmann,
1970; Wykoff, 1990; Uzoh, 2001; Uzoh and Oliver, 2006). The
coefficients from Eq. (6), the variance components, and the
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autocorrelation coefficient are presented in Table 6. If the true
regression coefficients were known, then the variance of new
observation Ŷ ¼ lnðPAIDBHÞ given the independent variables
would be s2

L þ s2
PðLÞ þ s2. (Note that the serial correlation of the

model is not involved in the variance of a single prediction. It
would be necessary to use r if the variance was needed for some
function of multiple measurements on a single tree).

The logarithmic-bias correction to the intercept term (Flewel-
ling and Pienaar, 1981) was estimated by adding half of the mean
squared error to the intercept term (Baskerville, 1972). Flewelling
and Pienaar (1981) suggested that for degrees of freedom >30 and
S2 < 0.5, the multiplicative correction of eS2=2 is usually adequate.
Since the residual mean squared error estimate is <0.5 and the
sample size is >30, Baskerville’s correction should be a close
approximation to the true logarithmic bias for the equation
presented (Eq. (6)). Also, the residuals appeared to be normal.
Therefore, Baskerville’s method was used for the logarithmic-bias
correction. All residual statistics presented in the tables and figures
are based on transformed logarithmic values and the correction
term is added into the intercept in Table 6.

6. Discussion

The relative importance of a variable is assessed by the
change in size of the standard error of prediction without the
variable in question. Table 5 shows the ranking of the variables
based on this criterion. Within the fundamental constraint of site
quality, tree position significantly influenced diameter growth.
BAL/DBH ((basal area in larger trees (m2/ha))/(dbh of the subject
tree)) had more effect on diameter growth than any other
variable (Table 5). The increment attained by an individual tree
is dependent on its competitive status relative to neighboring
trees. Consequently, the coefficient of BAL/DBH is negative,
indicating a competition modifier that would reduce diameter
growth rates relative to a tree’s competitive status. Therefore,
the largest diameter tree in a plot would have a BAL value of
zero, while the smallest diameter tree in the plot would have a
BAL value near that of the plot’s total basal area. As BAL
decreases, the predicted increment increases. The more open-
grown the tree, the less it is influenced by competitors because
the measure of relative size is tied to stand density. As a result,
dominance is less of a factor in increment predictions in sparsely
stocked stands (Wykoff, 1990; Uzoh et al., 1998; Uzoh, 2001;
Uzoh and Oliver, 2006).

Overall stand density as measured by SDI had the least
influence on diameter growth (Table 5). The importance of SDI
in the model suggests that diameter growth of all trees in a stand is
affected by stand density—trees with the largest diameters as well
as those with the smallest diameters. This relationship is in
accordance with that reported for the two levels-of-growing-stock
Table 5
Ranking of variables based on change in the size of the standard error of prediction

without the variable in question for the mixed model analysis

Variable Value of standard

error of prediction

without the variable

in question

Value of standard

error of prediction

for the full model

BAL/DBH (m2/ha) 0.624179 0.536395

SI 0.592815

LAT 0.54632

DBH2 0.54554

ln(DBH) 0.540287

SL[COS (ASP)] 0.53877

SDI 0.527001
installations in Oregon (Cochran and Barrett, 1995, 1999). Also, this
confirms the findings of Hann and Hanus (2002).

After thinning from below in dense stands, BAL is unchanged,
but predicted increment increases because SDI is lower. In rare
instances when growth after thinning from above is modeled,
predicted response may be overestimated, at least initially. Both
BAL and SDI are reduced, causing a predicted growth increase
greater than that for thinning from below. The response might be
delayed until tree crowns and root systems of subordinate trees
expand to take advantage of the added space. In general, however,
the effects of BAL and SDI are biologically rational and simple in
concept yet they can accommodate extensive variation in stand
structure and site conditions (Wykoff, 1990; Uzoh et al., 1998;
Uzoh and Oliver, 2006).

Site index (Meyer, 1938) (SI) had the second most effect on
diameter growth than any other variable (Table 5). It is important
to realize, however, that other factors were combined under the
variable SI. The data were scattered over a vast geographic area of
contrasting soils and climate, and included two varieties of
ponderosa pine (P. ponderosa var. ponderosa and var. scopulorum).
Some of the genetic differences may have affected 5-year periodic
annual increment (PAI) in diameter. Nevertheless, what we called
SI seemed to perform credibly in integrating and explaining these
complex differences. A contributing reason for the good perfor-
mance of site index may have been that stockability was not a
problem. All data were from sites capable of the productivity
estimated by Meyer (1938).

The natural logarithm of initial diameter (ln(DBH)) had the fifth
most effect on diameter growth. The size of initial diameter is an
indication of a tree’s competitive status within a plot or stand, and
thus an expression of tree vigor; while the square of initial
diameter (DBH2) had the fourth most effect on diameter growth
(Table 5). The inclusion of DBH2 gave Eq. (6) its asymptotic
approach to zero for large diameters, removing the need for
imposition of an arbitrary maximum diameter (Fig. 2).

Stage’s (1976) transformation of slope (SL) and aspect (ASP)
(SL[COS(ASP)]) had the sixth most effect on diameter growth
(Table 5). The transformation of slope and aspect has two
important properties, it is circular, and optima exist with respect
to both slope and aspect. We tried Stage (1976) transformation of
slope and aspect ((SL[COS(ASP)] and SL[SIN(ASP)])); however, only
SL[COS(ASP)] was statistically significant. The P-values (2-tail) for
SL[SIN(ASP)] was 0.6091. Additionally, with the variable included
in the model, AIC value increased by 10 points. As a result, we did
not include the variable in our analysis. Also, we tried Stage and
Salas (2007) transformation of elevation, aspect, and slope and that
did not work either; consequently, we did not use their proposed
transformation. Our plots were located at elevations where
ponderosa pine was best suited at that latitude. As a result, at
lower latitudes plots were located at higher elevations. Conse-
quently, for Stage and Salas (2007) transformation of elevation,
aspect, and slope to be successfully tested, we would have had to
have an especially designed study that had plots at several
elevations on the same aspect on both north and south slopes along
a latitudinal transect.

Latitude had the third most effect on diameter growth (Table 5).
Latitude is an important variable because more northerly locations
tend to be cooler, with shorter growing seasons, than more
southerly locations. Because diameter growth is sensitive to length
of growing season, latitude, which is the model location coefficient,
describes this climatic trend. Consequently, the coefficient of
latitude is negative. These site factors (slope, aspect, and latitude)
generally have no direct effect on tree growth, but act indirectly by
influencing moisture, temperature, light, and other chemical and
physical agents of the site (Uzoh, 2001). Since the factorial



Table 6
Parameter estimates and variance components for the 5-year periodic annual increment (PAI) in diameter model for managed even-aged stands of ponderosa pine

throughout western United States using the SAS system MIXED model analysis procedure

Parameter Estimate Standard error P-values (2-tail) Lower Upper

Intercept 0.50994513 0.858436 0.6713 �1.3506 2.08281

ln(DBH) (cm) 0.508652508 0.004251 0.0001 0.500322 0.51698

DBH2 (cm) �0.000068368 0.0000041 0.0001 �0.00008 �0.00006

SI (m) 0.030328112 0.004759 0.0001 0.02092 0.03974

SDI (trees/ha) �0.001152023 0.000013 0.0001 �0.00118 �0.00113

BAL/DBH (m2/ha) �0.016249869 0.000155 0.0001 �0.01655 �0.01595

LAT �0.063794567 0.019274 0.0017 �0.10244 �0.02514

SLCOSASP 0.004339865 0.002149 0.0443 0.000111 0.00856

Variance component

s2
PlotðLocaleÞ 0.027326607 0.002495 0.0001 0.023027 0.03296

s2
Locale 0.083486458 0.018677 0.0001 0.056266 0.13671

rSerial correlation coefficient 0.79274766 0.051365 0.0001 0.692075 0.89342

s2
Residual 0.176865694 0.000638 0.0001 0.175621 0.17812

F.C.C. Uzoh, W.W. Oliver / Forest Ecology and Management 256 (2008) 438–445444
approach to site quality evaluation is based on relatively stable
features of the environment and not on current vegetation
characteristics, it can be applied to both disturbed and undisturbed
sites. All parameter estimates were logical and in line with
expectations (Table 6).

PROC MIXED will not calculate the coefficients of variable with
very high degrees of multicollinearity (SAS, 2002). Consequently,
elevation was dropped in favor of latitude which is an obvious
location variable, because a high degree of multicollinearity
existed between the two variables, and because latitude had more
effect on diameter growth than did elevation. The two variables
were confounded because ponderosa pine is found at increasing
elevations as latitudes decrease. Age and longitude were dropped
because they were highly correlated with the more important
variable, site index. Age is usually correlated with SI in managed
stands because the range of tree sizes is usually restricted to
saplings through small sawtimber. The bulk of the plots in our
study were in pole size stands (see Table 2). Poles on poor sites tend
to be older than do poles on good sites. And longitude was
correlated with SI because our data spanned the geographic range
of ponderosa pine from South Dakota to the Pacific Coast. Few if
any site east of the Sierra Nevada or Cascade Range can equal the
better sites on the Pacific slope to the West.

One of the major obstacles we encountered in trying to use the
regression analysis approach to analyze the data set was the need
to account for the more complex nature of the covariance structure
of the model because of the multiple sizes of plots and the
correlation over time from measuring the same trees. We found
that there were statistically significant variance components for
plots within locales and for locales (Table 6). Therefore, we needed
to account appropriately for the error structure imposed by the
sampling scheme, and multilevel linear mixed model approach
accomplishes that successfully. What makes the multilevel linear
mixed models procedure unique in modeling repeated measured
data with hierarchical structure is the ability of the models to
include both fixed regression parameters (fixed effects) that
describe the shape of the typical growth curve over the entire
population, and random regression coefficients (random effects)
that individualize the curve to capture site-specific, tree-specific,
or other unit-specific characteristics of the growth pattern. The
random effect included in the model corresponds to sampling units
(locale, plots, and trees) that have a hierarchical structure with
multiple levels.

The model developed in this analysis appears to be well
behaved. The model is enhanced by confining the data set to
permanent plots in pure even-aged stands of ponderosa pine and
following the growth of individually tagged trees for long time
periods. Eighty-two percent of the plots were followed for 20 years
or longer. The diverse ecological requirements of ponderosa pine
trees represented in the data base should enhance model
performance and would encourage use of the model throughout
the range of ponderosa pine in the United States.
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